EDTA addition enhances bacterial respiration activities and hydrocarbon degradation in bioaugmented and non-bioaugmented oil-contaminated desert soils.
نویسندگان
چکیده
The low number and activity of hydrocarbon-degrading bacteria and the low solubility and availability of hydrocarbons hamper bioremediation of oil-contaminated soils in arid deserts, thus bioremediation treatments that circumvent these limitations are required. We tested the effect of Ethylenediaminetetraacetic acid (EDTA) addition, at different concentrations (i.e. 0.1, 1 and 10 mM), on bacterial respiration and biodegradation of Arabian light oil in bioaugmented (i.e. with the addition of exogenous alkane-degrading consortium) and non-bioaugmented oil-contaminated desert soils. Post-treatment shifts in the soils' bacterial community structure were monitored using MiSeq sequencing. Bacterial respiration, indicated by the amount of evolved CO2, was highest at 10 mM EDTA in bioaugmented and non-bioaugmented soils, reaching an amount of 2.2 ± 0.08 and 1.6 ± 0.02 mg-CO2 g(-1) after 14 days of incubation, respectively. GC-MS revealed that 91.5% of the C14-C30 alkanes were degraded after 42 days when 10 mM EDTA and the bacterial consortium were added together. MiSeq sequencing showed that 78-91% of retrieved sequences in the original soil belonged to Deinococci, Alphaproteobacteria, Gammaproteobacteia and Bacilli. The same bacterial classes were detected in the 10 mM EDTA-treated soils, however with slight differences in their relative abundances. In the bioaugmented soils, only Alcanivorax sp. MH3 and Parvibaculum sp. MH21 from the exogenous bacterial consortium could survive until the end of the experiment. We conclude that the addition of EDTA at appropriate concentrations could facilitate biodegradation processes by increasing hydrocarbon availability to microbes. The addition of exogenous oil-degrading bacteria along with EDTA could serve as an ideal solution for the decontamination of oil-contaminated desert soils.
منابع مشابه
Changes in respiration activities and bacterial communities in a bioaugmented oil-polluted soil in response to the addition of acyl homoserine lactones
The effect of bacterial quorum sensing (QS) signals on the respiration activity of an oil-polluted soil with and without the addition of an alkane-degrading bacterial consortium was investigated. The addition of C4eC12-HSL N-acyl homoserine lactones (AHLs) to the contaminated soil with the bacterial consortium resulted in a significant increase in CO2 evolution rates. Experiments with 1, 10 and...
متن کاملBioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems.
This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reductio...
متن کاملIn situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil
In situ biosurfactant (rhamnolipid) production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus), P...
متن کاملBIOREMEDIATION OF CRUDE OIL CONTAMINATED SOILS A Black Art or an Engineering Challenge?
A bioremediation of crude oil contaminated soils study was carried out in engineered laboratory biopile systems. In soil bioremediation, biopiles are ‘ex situ’ treatment systems that consist of excavated and aerated contaminated soils amended by addition of biological, mineral or organic material depending upon specific needs. When bacteria are added to the contaminated soil undergoing biologic...
متن کاملEffect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil
Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography-mass spectrome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 147 شماره
صفحات -
تاریخ انتشار 2016